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The electroreductive intramolecular coupling of phthalimides with ketones in the presence of chlorotri-
methylsilane gave five- and six-membered trans-cyclized products stereospecifically (>99%). Similar
electroreductive intramolecular coupling of phthalimides with aldehydes afforded five-, six-, and
seven-membered trans-cyclized products stereoselectively (75–93%). On the other hand, the reductive
coupling of N-(oxoalkyl)phthalimides with samarium(II) iodide gave cis-cyclized products stereoselec-
tively (88–>99%).

� 2009 Elsevier Ltd. All rights reserved.
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The reductive cross coupling between different types of car-
bonyl compounds is a useful method for the synthesis of adjacent
difunctional compounds such as 1,2-diols and a-hydroxyketones.
Recently, a variety of these types of reactions were realized using
samarium(II) iodide as a reducing agent.1 On the other hand, elec-
troreduction can accomplish the reductive cross coupling of car-
bonyl compounds without using the expensive rare-earth metal
reagent. For instance, we have reported the electroreductive cou-
pling of aromatic ketones with aliphatic ketones and aldehydes,2

esters,3 and acylimidazoles4 in the presence of chlorotrimethylsi-
lane (CTMS). In this context, we report herein that the electrore-
ductive intramolecular coupling of phthalimides with aliphatic
ketones and aldehydes in the presence of CTMS produced tricyclic
compounds incorporating an isoindolinone ring (Scheme 1). It is
noted that trans-dihydroxylated cyclized products were formed
stereospecifically (R = Me: >99%) or stereoselectively (R = H:
75–93%) by the electroreduction of N-(oxoalkyl)phthalimides.
The inter-5 and intramolecular6 reductive cross couplings of
phthalimides with aldehydes5,6a and ketones5,6b using samar-
ium(II) iodide have recently been reported. To compare with
the electrochemical method, we also tried the reductive coupling
of N-(oxoalkyl)phthalimides with samarium(II) iodide and found
that cis-cyclized products were obtained stereoselectively
(R = Me, H: 88–>99%). Therefore, the two reductive methods
brought about complemental stereochemical results in the reduc-
tive cyclization of N-(oxoalkyl)phthalimides.
ll rights reserved.
First, conditions for the electroreductive intramolecular cou-
pling were surveyed with 2-(3-oxobutyl)isoindoline-1,3-dione (1)
as a substrate and the results are summarized in Table 1. According
to the reported procedure,2–4 the electroreduction of 1 (1 mmol)
was carried out in 0.3 M solution of a tetraalkylammonium salt
in an aprotic polar solvent such as acetonitrile (15 mL) at a con-
stant current of 100 mA (300 C) employing a divide cell. In the ab-
sence of additive, only a complex mixture was obtained (run 1). In
the presence of CTMS, no cyclized product was detected and a sim-
ply reduced hydroxy lactam i and its dehydroxy derivative ii were
isolated in 42% and 28% yields, respectively (run 2). These results
show that the presence of CTMS and TEA is essential for the elect-
roreductive cyclization of 1. Although the change of supporting
electrolyte using acetonitrile as a solvent had a slight effect on
the yield of a five-member cyclized product 2 (runs 3–5), the use
of DMF and THF in place of acetonitrile decreased the yield of 2
to some extent (runs 6–8). As a cathode material, Pb gave better re-
sults than Pt, Ag, Zn, and Sn (runs 3, 9–12). Consequently, the best
R = Me, R' = H, n = 1,2             >99% trans
R = H, R' = TMS, n = 1~3         75~93% trans

Scheme 1.
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Figure 2. X-ray crystal structures of trans-5 and trans-6.

N

O

O

O

7  (n = 0)
9  (n = 3)

 + e
CTMS-TEA

Et4NOTs/CH3CN
N

OH

O

O

8    (n = 0)  53%
10  (n = 3)  46%

n n

Scheme 4.

Table 1
Electroreductive intramolecular coupling of 1
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Run Additivea Catholyteb Cathode
material

% Yield of trans-2c

1 None Et4NOTs/CH3CN Pb 0
2 CTMS Et4NOTs/CH3CN Pb 0d

3 CTMS/
TEA

Et4NOTs/CH3CN Pb 71

4 CTMS/
TEA

Et4NBr/CH3CN Pb 66

5 CTMS/
TEA

Bu4NClO4/
CH3CN

Pb 65

6 CTMS/
TEA

Et4NOTs/DMF Pb 55

7 CTMS/
TEA

Bu4NClO4/THF Pb 44

8 CTMS/
TEA

Bu4NPF6/THF Pb 45

9 CTMS/
TEA

Et4NOTs/CH3CN Pt 52

10 CTMS/
TEA

Et4NOTs/CH3CN Ag 52

11 CTMS/
TEA

Et4NOTs/CH3CN Zn 62

12 CTMS/
TEA

Et4NOTs/CH3CN Sn 40

a 5 equiv.
b 0.3 M electrolyte in solvent.
c Isolated yields.
d Simply reduced hydroxy lactam i and its dehydroxy variant ii were obtained.
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yield of 2 (71% yield) was obtained using Et4NOTs/acetonitrile as a
catholyte and a Pb cathode in the presence of CTMS and TEA (run
3).7 It was found by 1H NMR analysis that the cyclized product 2
was formed as a mono-trimethylsilyl ether stereospecifically
(>99%). The 1,9b-trans stereochemistry and 9b-trimethylsilyloxy
group in 2 (designated as trans-2) were undoubtedly confirmed
by X-ray crystallographic analysis (Fig. 1).8 The mono-silyl ether
Figure 1. X-ray crystal structures of trans-2 and trans-3.
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trans-2 was readily desilylated by treatment with TBAF in THF to
give the corresponding diol trans-3 quantitatively (Scheme 2).
The complete retention of the 1,9b-trans configuration in trans-3
was ascertained by X-ray crystallography (Fig. 1).8
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The electroreduction of 2-(4-oxopentyl)isoindoline-1,3-dione
(4) under the same conditions as run 3 in Table 1 gave a six-
membered cyclized product trans-5 in 77% yield stereospecifi-
cally (Scheme 3). The stereostructure of trans-5 was deter-
Figure 3. X-ray crystal struc
mined by X-ray crystallography (Fig. 2);8 the 1,10b-trans
configuration and 10b-trimethylsililoxy substitution were as-
signed to trans-5. Desilylation of trans-5 with TBAF gave 1,10b-
trans diol trans-6 quantitatively.

Unfortunately, the electroreduction of 2-(2-oxopropyl)isoindo-
line-1,3-dione (7) and 2-(5-oxohexyl)isoindoline-1,3-dione (9)
afforded simply reduced hydroxy lactams 8 and 10, respectively;
four- and seven-membered cyclized products were not detected
at all (Scheme 4). These hydroxy lactams 8 and 10 were obtained
by desilylation of initially formed silyl ethers during isolation.

Next, we attempted the electroreduction of 3-(1,3-dioxoisoin-
dolin-2-yl)propanal (11). The yield of a five-membered cyclized
product 12 was better in Bu4NClO4/THF (58% yield, trans:
cis = 86:14) than in Et4NOTs/CH3CN (45% yield, trans:cis = 85:15)
as a catholyte (Scheme 5). Therefore, the electroreduction of
4-(1,3-dioxoisoindolin-2-yl)butanal (13) and 5-(1,3-dioxoisoindo-
lin-2-yl)pentanal (15) was carried out in Bu4ClO4/THF to give six-
and seven-membered cyclized products 14 (67% yield, trans:
cis = 75:25) and 16 (34% yield, trans:cis = 93:7), respectively
(Scheme 6). The 1H NMR analysis of 12, 14, and 16 showed that
these cyclized products were obtained as di-trimethylsilyl ethers
and mixtures of two diastereomers (trans and cis), in contrast to
2 and 5 described above. After separation of the diastereomers of
12 and 14 by column chromatography, desilylation of each isomer
with TBAF/THF gave the corresponding diol 17 or 18 quantitatively
(Scheme 7). The stereostructures of both trans and cis isomers of
17 and 18 were confirmed by X-ray crystallography (Fig. 3).8

Although the diastereomers of 16 could not be separated, the
tures of 17, 18, and 19.



Table 2
Reductive cyclization of N-(oxoalkyl)phthalimides with samarium(II) iodide
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HO R

O

n

R = Me, n = 1~3
R = H, n = 1~3 cis

Run R n Product % Yieldb cis:transc

1 Me 1 3 70 88:12
2 Me 2 6 70 >99:1
3 Me 3 20 67 >99:1
4 H 1 17 34 93:7
5 H 2 18 28 >99:1
6 H 3 19 —d

a The reaction was carried out with 2 equiv of SmI2 at room temperature.
b Isolated yields.
c Determined by 1N NMR.
d Compound 19 could not be obtained.

 + 2e
N

O

O

O

N

TMSO
O

O

1

N

TMSO
O

O

+CTMS
N

OTMS

O

O

N

TMSO
O

O

N

TMSO
OH

O
trans-2

+H

trans-TS

or

cis-TS

trans-TS

A

B

1
SmI2

N

O
O

O

SmIII

N

HO
HO

O
cis-3

Sm-chelated TS

Scheme 8.

N. Kise, T. Sakurai / Tetrahedron Letters 51 (2010) 70–74 73
major isomer of the desilylated diol 19 could be isolated by recrys-
tallization and identified to be trans by X-ray crystallography (
Fig. 3).8

The reductive cyclization of 11, 13, and 15 with samarium(II) io-
dide has been reported,6a but the stereoselectivities of the cyclized
products 17–19 were not investigated. Therefore, we tried the
reduction of N-(oxoalkyl)phthalimides 1, 4, 9, 11, 13, and 15 with
samarium(II) iodide (Table 2). As expected,9 cis-cyclized products
of 3, 6, 17, 18, and 20 were obtained as major or predominant iso-
mers in all cases (88–>99% stereoselectivities), although 19 could
not be obtained from 15. The stereostructures of cis-isomers of 3,
6, and 20 were determined by NMR analysis for cis-310 or by
X-ray crystallography for cis-6 and cis-20 (Fig. 4).8

The electroreductive intramolecular coupling of N-(oxoalkyl)-
phthalimides seems to be initiated by the reduction of the phthal-
imide moiety, according to the results shown in Scheme 4. To
ascertain this assumption, we measured the cyclic voltammetry
of N-methylphthalimide, 1, and acetone in 0.03 M Bu4NClO4/DMF
on a Pt cathode: the cyclic voltamograms of N-methylphthalimide
and 1 (3 mM) showed a reduction peak at �1.5311 and �1.50 V
versus SCE, respectively, whereas that of acetone gave no reduction
peak from 0 to �3.0 V versus SCE. These observations suggest that
the phthalimide moiety is much more reducible than the keto car-
bonyl group in 1. Hence, the reaction mechanism of the electrore-
ductive coupling of 1 can be presumed as illustrated in Scheme 8.
Anion A is formed from 1 by a two-electron transfer and following
O-silylation. The carbanion in A attacks the keto carbonyl group
intramolecularly through transition state TS. Since cis-TS is more
unfavorable than trans-TS because of the electronic repulsion be-
tween the two oxygen atoms, trans-2 is formed predominantly
through subsequent protonation of resulting tertiary O-anion B.
Figure 4. X-ray crystal structures of cis-6 and cis-20.
In the case of the reductive coupling of an aldehyde variant 11,
silylation of resulting secondary O-anion allows the formation of
di-trimethylsilyl ether 12. On the contrary, the reduction of N-
(oxoalkyl)phthalimides with samarium(II) iodide prefers cis-cycli-
zation probably owing to the chelation of the two oxygen atoms to
the samarium(III) atom in the transition state.9a,b

In conclusion, the electroreduction of N-(oxoalkyl)phthalimides
1 and 4 in the presence of CTMS and TEA stereospecifically gave
five- and six-membered trans-cyclized products trans-2 and
trans-5, respectively. The electroreduction of (1,3-dioxoisoindo-
lin-2-yl)alkanals 11, 13, and 15 in the presence of CTMS and TEA
afforded five-, six-, and seven-membered cyclized products 12,
14, and 16 with trans-stereoselectivity. In contrast to trans-selec-
tive cyclization in the electroreduction, the reduction of N-
(oxoalkyl)phthalimides with samarium(II) iodide resulted in cis-
selective cyclization.
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cis-17 (CCDC 746364): C11H11NO3, FW = 205.21, mp 175–177 �C, monoclinic,
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